123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914 |
- /*************************************************************************
- *
- * $Id$
- *
- * Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
- *
- * Permission to use, copy, modify, and distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- *
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
- * MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
- * CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
- *
- ************************************************************************
- *
- * Functions to handle special quantities in floating-point numbers
- * (that is, NaNs and infinity). They provide the capability to detect
- * and fabricate special quantities.
- *
- * Although written to be as portable as possible, it can never be
- * guaranteed to work on all platforms, as not all hardware supports
- * special quantities.
- *
- * The approach used here (approximately) is to:
- *
- * 1. Use C99 functionality when available.
- * 2. Use IEEE 754 bit-patterns if possible.
- * 3. Use platform-specific techniques.
- *
- ************************************************************************/
- /*
- * TODO:
- * o Put all the magic into trio_fpclassify_and_signbit(), and use this from
- * trio_isnan() etc.
- */
- /*************************************************************************
- * Include files
- */
- #include "triodef.h"
- #include "trionan.h"
- #include <math.h>
- #include <string.h>
- #include <limits.h>
- #include <float.h>
- #if defined(TRIO_PLATFORM_UNIX)
- # include <signal.h>
- #endif
- #if defined(TRIO_COMPILER_DECC)
- # if defined(__linux__)
- # include <cpml.h>
- # else
- # include <fp_class.h>
- # endif
- #endif
- #include <assert.h>
- #if defined(TRIO_DOCUMENTATION)
- # include "doc/doc_nan.h"
- #endif
- /** @addtogroup SpecialQuantities
- @{
- */
- /*************************************************************************
- * Definitions
- */
- #define TRIO_TRUE (1 == 1)
- #define TRIO_FALSE (0 == 1)
- /*
- * We must enable IEEE floating-point on Alpha
- */
- #if defined(__alpha) && !defined(_IEEE_FP)
- # if defined(TRIO_COMPILER_DECC)
- # if defined(TRIO_PLATFORM_VMS)
- # error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
- # else
- # if !defined(_CFE)
- # error "Must be compiled with option -ieee"
- # endif
- # endif
- # elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
- # error "Must be compiled with option -mieee"
- # endif
- #endif /* __alpha && ! _IEEE_FP */
- /*
- * In ANSI/IEEE 754-1985 64-bits double format numbers have the
- * following properties (amoungst others)
- *
- * o FLT_RADIX == 2: binary encoding
- * o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
- * to indicate special numbers (e.g. NaN and Infinity), so the
- * maximum exponent is 10 bits wide (2^10 == 1024).
- * o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
- * numbers are normalized the initial binary 1 is represented
- * implicitly (the so-called "hidden bit"), which leaves us with
- * the ability to represent 53 bits wide mantissa.
- */
- #if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
- # define USE_IEEE_754
- #endif
- /*************************************************************************
- * Constants
- */
- static TRIO_CONST char rcsid[] = "@(#)$Id$";
- #if defined(USE_IEEE_754)
- /*
- * Endian-agnostic indexing macro.
- *
- * The value of internalEndianMagic, when converted into a 64-bit
- * integer, becomes 0x0706050403020100 (we could have used a 64-bit
- * integer value instead of a double, but not all platforms supports
- * that type). The value is automatically encoded with the correct
- * endianess by the compiler, which means that we can support any
- * kind of endianess. The individual bytes are then used as an index
- * for the IEEE 754 bit-patterns and masks.
- */
- #define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
- #if (defined(__BORLANDC__) && __BORLANDC__ >= 0x0590)
- static TRIO_CONST double internalEndianMagic = 7.949928895127362e-275;
- #else
- static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;
- #endif
- /* Mask for the exponent */
- static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
- 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
- };
- /* Mask for the mantissa */
- static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
- 0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
- };
- /* Mask for the sign bit */
- static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
- 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
- };
- /* Bit-pattern for negative zero */
- static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
- 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
- };
- /* Bit-pattern for infinity */
- static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
- 0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
- };
- /* Bit-pattern for quiet NaN */
- static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
- 0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
- };
- /*************************************************************************
- * Functions
- */
- /*
- * trio_make_double
- */
- TRIO_PRIVATE double
- trio_make_double
- TRIO_ARGS1((values),
- TRIO_CONST unsigned char *values)
- {
- TRIO_VOLATILE double result;
- int i;
- for (i = 0; i < (int)sizeof(double); i++) {
- ((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
- }
- return result;
- }
- /*
- * trio_is_special_quantity
- */
- TRIO_PRIVATE int
- trio_is_special_quantity
- TRIO_ARGS2((number, has_mantissa),
- double number,
- int *has_mantissa)
- {
- unsigned int i;
- unsigned char current;
- int is_special_quantity = TRIO_TRUE;
- *has_mantissa = 0;
- for (i = 0; i < (unsigned int)sizeof(double); i++) {
- current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
- is_special_quantity
- &= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
- *has_mantissa |= (current & ieee_754_mantissa_mask[i]);
- }
- return is_special_quantity;
- }
- /*
- * trio_is_negative
- */
- TRIO_PRIVATE int
- trio_is_negative
- TRIO_ARGS1((number),
- double number)
- {
- unsigned int i;
- int is_negative = TRIO_FALSE;
- for (i = 0; i < (unsigned int)sizeof(double); i++) {
- is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]
- & ieee_754_sign_mask[i]);
- }
- return is_negative;
- }
- #endif /* USE_IEEE_754 */
- /**
- Generate negative zero.
- @return Floating-point representation of negative zero.
- */
- TRIO_PUBLIC double
- trio_nzero(TRIO_NOARGS)
- {
- #if defined(USE_IEEE_754)
- return trio_make_double(ieee_754_negzero_array);
- #else
- TRIO_VOLATILE double zero = 0.0;
- return -zero;
- #endif
- }
- /**
- Generate positive infinity.
- @return Floating-point representation of positive infinity.
- */
- TRIO_PUBLIC double
- trio_pinf(TRIO_NOARGS)
- {
- /* Cache the result */
- static double result = 0.0;
- if (result == 0.0) {
-
- #if defined(INFINITY) && defined(__STDC_IEC_559__)
- result = (double)INFINITY;
- #elif defined(USE_IEEE_754)
- result = trio_make_double(ieee_754_infinity_array);
- #else
- /*
- * If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
- * as infinity. Otherwise we have to resort to an overflow
- * operation to generate infinity.
- */
- # if defined(TRIO_PLATFORM_UNIX)
- void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
- # endif
- result = HUGE_VAL;
- if (HUGE_VAL == DBL_MAX) {
- /* Force overflow */
- result += HUGE_VAL;
- }
-
- # if defined(TRIO_PLATFORM_UNIX)
- signal(SIGFPE, signal_handler);
- # endif
- #endif
- }
- return result;
- }
- /**
- Generate negative infinity.
- @return Floating-point value of negative infinity.
- */
- TRIO_PUBLIC double
- trio_ninf(TRIO_NOARGS)
- {
- static double result = 0.0;
- if (result == 0.0) {
- /*
- * Negative infinity is calculated by negating positive infinity,
- * which can be done because it is legal to do calculations on
- * infinity (for example, 1 / infinity == 0).
- */
- result = -trio_pinf();
- }
- return result;
- }
- /**
- Generate NaN.
- @return Floating-point representation of NaN.
- */
- TRIO_PUBLIC double
- trio_nan(TRIO_NOARGS)
- {
- /* Cache the result */
- static double result = 0.0;
- if (result == 0.0) {
-
- #if defined(TRIO_COMPILER_SUPPORTS_C99)
- result = nan("");
- #elif defined(NAN) && defined(__STDC_IEC_559__)
- result = (double)NAN;
-
- #elif defined(USE_IEEE_754)
- result = trio_make_double(ieee_754_qnan_array);
- #else
- /*
- * There are several ways to generate NaN. The one used here is
- * to divide infinity by infinity. I would have preferred to add
- * negative infinity to positive infinity, but that yields wrong
- * result (infinity) on FreeBSD.
- *
- * This may fail if the hardware does not support NaN, or if
- * the Invalid Operation floating-point exception is unmasked.
- */
- # if defined(TRIO_PLATFORM_UNIX)
- void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
- # endif
-
- result = trio_pinf() / trio_pinf();
-
- # if defined(TRIO_PLATFORM_UNIX)
- signal(SIGFPE, signal_handler);
- # endif
-
- #endif
- }
- return result;
- }
- /**
- Check for NaN.
- @param number An arbitrary floating-point number.
- @return Boolean value indicating whether or not the number is a NaN.
- */
- TRIO_PUBLIC int
- trio_isnan
- TRIO_ARGS1((number),
- double number)
- {
- #if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
- || defined(TRIO_COMPILER_SUPPORTS_UNIX95)
- /*
- * C99 defines isnan() as a macro. UNIX95 defines isnan() as a
- * function. This function was already present in XPG4, but this
- * is a bit tricky to detect with compiler defines, so we choose
- * the conservative approach and only use it for UNIX95.
- */
- return isnan(number);
-
- #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
- /*
- * Microsoft Visual C++ and Borland C++ Builder have an _isnan()
- * function.
- */
- return _isnan(number) ? TRIO_TRUE : TRIO_FALSE;
- #elif defined(USE_IEEE_754)
- /*
- * Examine IEEE 754 bit-pattern. A NaN must have a special exponent
- * pattern, and a non-empty mantissa.
- */
- int has_mantissa;
- int is_special_quantity;
- is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
-
- return (is_special_quantity && has_mantissa);
-
- #else
- /*
- * Fallback solution
- */
- int status;
- double integral, fraction;
-
- # if defined(TRIO_PLATFORM_UNIX)
- void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
- # endif
-
- status = (/*
- * NaN is the only number which does not compare to itself
- */
- ((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) ||
- /*
- * Fallback solution if NaN compares to NaN
- */
- ((number != 0.0) &&
- (fraction = modf(number, &integral),
- integral == fraction)));
-
- # if defined(TRIO_PLATFORM_UNIX)
- signal(SIGFPE, signal_handler);
- # endif
-
- return status;
-
- #endif
- }
- /**
- Check for infinity.
- @param number An arbitrary floating-point number.
- @return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
- */
- TRIO_PUBLIC int
- trio_isinf
- TRIO_ARGS1((number),
- double number)
- {
- #if defined(TRIO_COMPILER_DECC) && !defined(__linux__)
- /*
- * DECC has an isinf() macro, but it works differently than that
- * of C99, so we use the fp_class() function instead.
- */
- return ((fp_class(number) == FP_POS_INF)
- ? 1
- : ((fp_class(number) == FP_NEG_INF) ? -1 : 0));
- #elif defined(isinf)
- /*
- * C99 defines isinf() as a macro.
- */
- return isinf(number)
- ? ((number > 0.0) ? 1 : -1)
- : 0;
-
- #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
- /*
- * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
- * function that can be used to detect infinity.
- */
- return ((_fpclass(number) == _FPCLASS_PINF)
- ? 1
- : ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));
- #elif defined(USE_IEEE_754)
- /*
- * Examine IEEE 754 bit-pattern. Infinity must have a special exponent
- * pattern, and an empty mantissa.
- */
- int has_mantissa;
- int is_special_quantity;
- is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
-
- return (is_special_quantity && !has_mantissa)
- ? ((number < 0.0) ? -1 : 1)
- : 0;
- #else
- /*
- * Fallback solution.
- */
- int status;
-
- # if defined(TRIO_PLATFORM_UNIX)
- void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
- # endif
-
- double infinity = trio_pinf();
-
- status = ((number == infinity)
- ? 1
- : ((number == -infinity) ? -1 : 0));
-
- # if defined(TRIO_PLATFORM_UNIX)
- signal(SIGFPE, signal_handler);
- # endif
-
- return status;
-
- #endif
- }
- #if 0
- /* Temporary fix - this routine is not used anywhere */
- /**
- Check for finity.
- @param number An arbitrary floating-point number.
- @return Boolean value indicating whether or not the number is a finite.
- */
- TRIO_PUBLIC int
- trio_isfinite
- TRIO_ARGS1((number),
- double number)
- {
- #if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
- /*
- * C99 defines isfinite() as a macro.
- */
- return isfinite(number);
-
- #elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
- /*
- * Microsoft Visual C++ and Borland C++ Builder use _finite().
- */
- return _finite(number);
- #elif defined(USE_IEEE_754)
- /*
- * Examine IEEE 754 bit-pattern. For finity we do not care about the
- * mantissa.
- */
- int dummy;
- return (! trio_is_special_quantity(number, &dummy));
- #else
- /*
- * Fallback solution.
- */
- return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0));
-
- #endif
- }
- #endif
- /*
- * The sign of NaN is always false
- */
- TRIO_PUBLIC int
- trio_fpclassify_and_signbit
- TRIO_ARGS2((number, is_negative),
- double number,
- int *is_negative)
- {
- #if defined(fpclassify) && defined(signbit)
- /*
- * C99 defines fpclassify() and signbit() as a macros
- */
- *is_negative = signbit(number);
- switch (fpclassify(number)) {
- case FP_NAN:
- return TRIO_FP_NAN;
- case FP_INFINITE:
- return TRIO_FP_INFINITE;
- case FP_SUBNORMAL:
- return TRIO_FP_SUBNORMAL;
- case FP_ZERO:
- return TRIO_FP_ZERO;
- default:
- return TRIO_FP_NORMAL;
- }
- #else
- # if defined(TRIO_COMPILER_DECC)
- /*
- * DECC has an fp_class() function.
- */
- # define TRIO_FPCLASSIFY(n) fp_class(n)
- # define TRIO_QUIET_NAN FP_QNAN
- # define TRIO_SIGNALLING_NAN FP_SNAN
- # define TRIO_POSITIVE_INFINITY FP_POS_INF
- # define TRIO_NEGATIVE_INFINITY FP_NEG_INF
- # define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM
- # define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM
- # define TRIO_POSITIVE_ZERO FP_POS_ZERO
- # define TRIO_NEGATIVE_ZERO FP_NEG_ZERO
- # define TRIO_POSITIVE_NORMAL FP_POS_NORM
- # define TRIO_NEGATIVE_NORMAL FP_NEG_NORM
-
- # elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
- /*
- * Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
- * function.
- */
- # define TRIO_FPCLASSIFY(n) _fpclass(n)
- # define TRIO_QUIET_NAN _FPCLASS_QNAN
- # define TRIO_SIGNALLING_NAN _FPCLASS_SNAN
- # define TRIO_POSITIVE_INFINITY _FPCLASS_PINF
- # define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF
- # define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD
- # define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND
- # define TRIO_POSITIVE_ZERO _FPCLASS_PZ
- # define TRIO_NEGATIVE_ZERO _FPCLASS_NZ
- # define TRIO_POSITIVE_NORMAL _FPCLASS_PN
- # define TRIO_NEGATIVE_NORMAL _FPCLASS_NN
-
- # elif defined(FP_PLUS_NORM)
- /*
- * HP-UX 9.x and 10.x have an fpclassify() function, that is different
- * from the C99 fpclassify() macro supported on HP-UX 11.x.
- *
- * AIX has class() for C, and _class() for C++, which returns the
- * same values as the HP-UX fpclassify() function.
- */
- # if defined(TRIO_PLATFORM_AIX)
- # if defined(__cplusplus)
- # define TRIO_FPCLASSIFY(n) _class(n)
- # else
- # define TRIO_FPCLASSIFY(n) class(n)
- # endif
- # else
- # define TRIO_FPCLASSIFY(n) fpclassify(n)
- # endif
- # define TRIO_QUIET_NAN FP_QNAN
- # define TRIO_SIGNALLING_NAN FP_SNAN
- # define TRIO_POSITIVE_INFINITY FP_PLUS_INF
- # define TRIO_NEGATIVE_INFINITY FP_MINUS_INF
- # define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM
- # define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM
- # define TRIO_POSITIVE_ZERO FP_PLUS_ZERO
- # define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO
- # define TRIO_POSITIVE_NORMAL FP_PLUS_NORM
- # define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM
- # endif
- # if defined(TRIO_FPCLASSIFY)
- switch (TRIO_FPCLASSIFY(number)) {
- case TRIO_QUIET_NAN:
- case TRIO_SIGNALLING_NAN:
- *is_negative = TRIO_FALSE; /* NaN has no sign */
- return TRIO_FP_NAN;
- case TRIO_POSITIVE_INFINITY:
- *is_negative = TRIO_FALSE;
- return TRIO_FP_INFINITE;
- case TRIO_NEGATIVE_INFINITY:
- *is_negative = TRIO_TRUE;
- return TRIO_FP_INFINITE;
- case TRIO_POSITIVE_SUBNORMAL:
- *is_negative = TRIO_FALSE;
- return TRIO_FP_SUBNORMAL;
- case TRIO_NEGATIVE_SUBNORMAL:
- *is_negative = TRIO_TRUE;
- return TRIO_FP_SUBNORMAL;
- case TRIO_POSITIVE_ZERO:
- *is_negative = TRIO_FALSE;
- return TRIO_FP_ZERO;
- case TRIO_NEGATIVE_ZERO:
- *is_negative = TRIO_TRUE;
- return TRIO_FP_ZERO;
- case TRIO_POSITIVE_NORMAL:
- *is_negative = TRIO_FALSE;
- return TRIO_FP_NORMAL;
- case TRIO_NEGATIVE_NORMAL:
- *is_negative = TRIO_TRUE;
- return TRIO_FP_NORMAL;
- default:
- /* Just in case... */
- *is_negative = (number < 0.0);
- return TRIO_FP_NORMAL;
- }
-
- # else
- /*
- * Fallback solution.
- */
- int rc;
-
- if (number == 0.0) {
- /*
- * In IEEE 754 the sign of zero is ignored in comparisons, so we
- * have to handle this as a special case by examining the sign bit
- * directly.
- */
- # if defined(USE_IEEE_754)
- *is_negative = trio_is_negative(number);
- # else
- *is_negative = TRIO_FALSE; /* FIXME */
- # endif
- return TRIO_FP_ZERO;
- }
- if (trio_isnan(number)) {
- *is_negative = TRIO_FALSE;
- return TRIO_FP_NAN;
- }
- if ((rc = trio_isinf(number))) {
- *is_negative = (rc == -1);
- return TRIO_FP_INFINITE;
- }
- if ((number > 0.0) && (number < DBL_MIN)) {
- *is_negative = TRIO_FALSE;
- return TRIO_FP_SUBNORMAL;
- }
- if ((number < 0.0) && (number > -DBL_MIN)) {
- *is_negative = TRIO_TRUE;
- return TRIO_FP_SUBNORMAL;
- }
- *is_negative = (number < 0.0);
- return TRIO_FP_NORMAL;
-
- # endif
- #endif
- }
- /**
- Examine the sign of a number.
- @param number An arbitrary floating-point number.
- @return Boolean value indicating whether or not the number has the
- sign bit set (i.e. is negative).
- */
- TRIO_PUBLIC int
- trio_signbit
- TRIO_ARGS1((number),
- double number)
- {
- int is_negative;
-
- (void)trio_fpclassify_and_signbit(number, &is_negative);
- return is_negative;
- }
- #if 0
- /* Temporary fix - this routine is not used in libxml */
- /**
- Examine the class of a number.
- @param number An arbitrary floating-point number.
- @return Enumerable value indicating the class of @p number
- */
- TRIO_PUBLIC int
- trio_fpclassify
- TRIO_ARGS1((number),
- double number)
- {
- int dummy;
-
- return trio_fpclassify_and_signbit(number, &dummy);
- }
- #endif
- /** @} SpecialQuantities */
- /*************************************************************************
- * For test purposes.
- *
- * Add the following compiler option to include this test code.
- *
- * Unix : -DSTANDALONE
- * VMS : /DEFINE=(STANDALONE)
- */
- #if defined(STANDALONE)
- # include <stdio.h>
- static TRIO_CONST char *
- getClassification
- TRIO_ARGS1((type),
- int type)
- {
- switch (type) {
- case TRIO_FP_INFINITE:
- return "FP_INFINITE";
- case TRIO_FP_NAN:
- return "FP_NAN";
- case TRIO_FP_NORMAL:
- return "FP_NORMAL";
- case TRIO_FP_SUBNORMAL:
- return "FP_SUBNORMAL";
- case TRIO_FP_ZERO:
- return "FP_ZERO";
- default:
- return "FP_UNKNOWN";
- }
- }
- static void
- print_class
- TRIO_ARGS2((prefix, number),
- TRIO_CONST char *prefix,
- double number)
- {
- printf("%-6s: %s %-15s %g\n",
- prefix,
- trio_signbit(number) ? "-" : "+",
- getClassification(TRIO_FPCLASSIFY(number)),
- number);
- }
- int main(TRIO_NOARGS)
- {
- double my_nan;
- double my_pinf;
- double my_ninf;
- # if defined(TRIO_PLATFORM_UNIX)
- void (*signal_handler) TRIO_PROTO((int));
- # endif
- my_nan = trio_nan();
- my_pinf = trio_pinf();
- my_ninf = trio_ninf();
- print_class("Nan", my_nan);
- print_class("PInf", my_pinf);
- print_class("NInf", my_ninf);
- print_class("PZero", 0.0);
- print_class("NZero", -0.0);
- print_class("PNorm", 1.0);
- print_class("NNorm", -1.0);
- print_class("PSub", 1.01e-307 - 1.00e-307);
- print_class("NSub", 1.00e-307 - 1.01e-307);
-
- printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_nan,
- ((unsigned char *)&my_nan)[0],
- ((unsigned char *)&my_nan)[1],
- ((unsigned char *)&my_nan)[2],
- ((unsigned char *)&my_nan)[3],
- ((unsigned char *)&my_nan)[4],
- ((unsigned char *)&my_nan)[5],
- ((unsigned char *)&my_nan)[6],
- ((unsigned char *)&my_nan)[7],
- trio_isnan(my_nan), trio_isinf(my_nan));
- printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_pinf,
- ((unsigned char *)&my_pinf)[0],
- ((unsigned char *)&my_pinf)[1],
- ((unsigned char *)&my_pinf)[2],
- ((unsigned char *)&my_pinf)[3],
- ((unsigned char *)&my_pinf)[4],
- ((unsigned char *)&my_pinf)[5],
- ((unsigned char *)&my_pinf)[6],
- ((unsigned char *)&my_pinf)[7],
- trio_isnan(my_pinf), trio_isinf(my_pinf));
- printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_ninf,
- ((unsigned char *)&my_ninf)[0],
- ((unsigned char *)&my_ninf)[1],
- ((unsigned char *)&my_ninf)[2],
- ((unsigned char *)&my_ninf)[3],
- ((unsigned char *)&my_ninf)[4],
- ((unsigned char *)&my_ninf)[5],
- ((unsigned char *)&my_ninf)[6],
- ((unsigned char *)&my_ninf)[7],
- trio_isnan(my_ninf), trio_isinf(my_ninf));
-
- # if defined(TRIO_PLATFORM_UNIX)
- signal_handler = signal(SIGFPE, SIG_IGN);
- # endif
-
- my_pinf = DBL_MAX + DBL_MAX;
- my_ninf = -my_pinf;
- my_nan = my_pinf / my_pinf;
- # if defined(TRIO_PLATFORM_UNIX)
- signal(SIGFPE, signal_handler);
- # endif
-
- printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_nan,
- ((unsigned char *)&my_nan)[0],
- ((unsigned char *)&my_nan)[1],
- ((unsigned char *)&my_nan)[2],
- ((unsigned char *)&my_nan)[3],
- ((unsigned char *)&my_nan)[4],
- ((unsigned char *)&my_nan)[5],
- ((unsigned char *)&my_nan)[6],
- ((unsigned char *)&my_nan)[7],
- trio_isnan(my_nan), trio_isinf(my_nan));
- printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_pinf,
- ((unsigned char *)&my_pinf)[0],
- ((unsigned char *)&my_pinf)[1],
- ((unsigned char *)&my_pinf)[2],
- ((unsigned char *)&my_pinf)[3],
- ((unsigned char *)&my_pinf)[4],
- ((unsigned char *)&my_pinf)[5],
- ((unsigned char *)&my_pinf)[6],
- ((unsigned char *)&my_pinf)[7],
- trio_isnan(my_pinf), trio_isinf(my_pinf));
- printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
- my_ninf,
- ((unsigned char *)&my_ninf)[0],
- ((unsigned char *)&my_ninf)[1],
- ((unsigned char *)&my_ninf)[2],
- ((unsigned char *)&my_ninf)[3],
- ((unsigned char *)&my_ninf)[4],
- ((unsigned char *)&my_ninf)[5],
- ((unsigned char *)&my_ninf)[6],
- ((unsigned char *)&my_ninf)[7],
- trio_isnan(my_ninf), trio_isinf(my_ninf));
-
- return 0;
- }
- #endif
|